

SSM St. Clare Health Center St. Louis County, MO

Technical Report III

Christopher Brandmeier

Advisor: Dr. Linda Hanagan

Agenda

- General Information and Location
- Floor Plans and Loading
- Typical Bay Geometry
- Floor Systems
 - Composite Steel Framing (Original)
 - Ordinary Steel Framing
 - Two-Way Slab System
 - One-Way Slab System (with intermediate beams)
 - One-Way Slab System (without intermediate beams)
- System Comparison
- Decision Matrix, Criteria
- Conclusion, Questions

SSM St. Clare Health Center

SSM Health Care[™]

1

erici

K

Full Height:	90 feet					
Number of Stories:	6					
Size:	427,000 GSF					
Cost:	\$223.5 million					
Dates of Construction:	Sept. 2006 – March 2009					
Project Delivery Method:	Integrated "Lean" Project Delivery					
	CCM Llealth Care Ct. Lawia					
Owner:	SSIM Health Care, St. Louis					
Owner's Program Manager:	Hammes Company					
Architect of Record:	HGA Architects and Engineers					
Associate Architect:	Mackey Mitchel Associates					
Structural Engineers:	HGA Architects and Engineers					
MEP Engineers:	KJWW Engineering					
Construction Manager:	Alberici Construction					
Elevator Consultants:	Larah Datas 8 Associates Inc					

Location

Site

Bed Tower

Typical Bay

Gravity Load Conditions

- Live Load
 - 80 psf Corridor
 - 60 psf Operating Room
 - * 20 psf Movable partitions
- Dead Load
 - Same floor assembly throughout
 - 64 psf Hospital Floor
 - 70 psf Hospital Roof
- Façade Load
 - 51 psf Brick Cavity Wall
 - 25 psf Glazing
 - Approximately 30% glazing

Composite Steel Framing

- Deck: 3VLI18
 - 3 Span = 14.75' > 7.5'
- Beam: W16x26
 - 166 kft > 79.1 kft
 - 0.48
- Girder: W24x55
 - 574 kft > 250.6 kft
 - 0.44
- Column:
 - Interior: W14x90
 - 979 k > 815 k
 - 0.83
 - Exterior: W14x61
 - 514 k > 505.5 k = Pu
 - 0.98

- DECK: 3", IBG DECK W/ 31/2" LW CONC TOPPING Z HR FIRE PATING TYP.
 - 50 ksi steel
 - 3500 psi concrete

Non-Composite Steel Framing

- No camber
- Slightly heavier members
- Deck achieves same fire rating
- Same max depth

DECK: JULI 2022 DECK W/ 31/2" LW CONC 2 Hr FIRE RATING TYP

> 50 ksi steel 3500 psi concrete (LW)

Two-Way Slab System

(WIT	HOUT	SHE	ARHEA	DS)					squ	ARE E	DGE F	PANE	_			SC	UAR	E INT	ERIOR	PAN	EL	Grad	e 60 l	Bars
SPAN Factored (1) Total Panel Moments Reinford								forcing Ba	ing Bars End Panel					(2) (3) (1)	(1)	Reinforcing Bars								
Cols.	pased	Min.	Square	-M	+M	-M	0	Each	Each		Each Middle Skie		Steel (psf)			Min.	Column Shin Middle Shin		a Okia	Steel (psf)				
1=12	Load	00	unn .	Ext.	int.	1st int.	Top	iumn sen	Tap	Midde	Too	Loc	ation of P	lanel	Span cc	Load Col		Sq. Col.		mudu onp		Location of Panel		
(性)	(paf)	(in.)	Ý	(th-kip)	(f5-kip)	(tt-kip)	Ext. +	Bottom	Int.	Bottom	Int	E	EC	С	(ft)	(psf)	(n.)	Тор	Bottom	Тор	Bottom	1	ΙĒ	IC
10 in. = TOTAL THICKNESS OF SLAB 0.833 c.f./s.f.											10 in. = TOTAL THICKNESS OF SLAB 0.833 c.f./s.f.				/s.f.									
26 26 26 26 26 26 26 26	50 100 150 200 250 300 350	20 25 29 34 38 45 52	0.791 0.723 0.696 0.617 0.658 0.610 0.609	102 123 143 161 178 188 196	204 247 286 322 355 376 392	275 332 385 434 478 507 528	12-#5 4 12-#5 4 13-#5 4 14-#5 3 16-#5 5 12-#6 2 17-#5 2	11-#5 13-#5 11-#6 9-#7 10-#7 14-#6 9-#8	13#6 12#7 14#7 12#8 17#7 14#8 15#8	10.#5 10.#5 10.#5 11.#5 9.#6 13.#5 10.#6	10-#5 10-#5 10-#5 10-#5 11-#5 11-#5 12-#5	2.59 2.84 3.11 3.46 3.81 3.99 4.32	2.61 2.85 3.13 3.48 3.84 4.02 4.37	2.55 2.79 3.13 3.61 4.05 4.20 4.43	26 26 26 26 26 26 26	50 100 150 200 250 300 350	14 19 25 30 36 45 55	17-#5 15-#6 13-#7 12-#8 13-#8 13-#8 13-#8	10.#5 10.#5 12.#5 9.#6 13.#5 10.#6	10-#5 10-#5 10-#5 10-#5 10-#5 10-#5 11-#5	10-#5 10-#5 10-#5 10-#5 10-#5 10-#5	2.60 2.85 3.06 3.49 3.73 3.78 4.09	2.62 2.87 3.09 3.49 3.74 3.82 4.14	2.6 2.8 3.1 3.4 3.7 3.8 4.1
27 27 27 27 27 27 27 27 27	50 100 150 200 250 300 350	22 27 32 36 43 51 58	0.760 0.710 0.639 0.671 0.610 0.609 0.608	113 137 159 179 193 204 212	227 274 317 358 386 407 423	305 369 427 481 520 548 570	12-#5 4 12-#5 5 14-#5 3 16-#5 5 12-#6 2 13-#6 1 19-#5 1	12-#5 11-#6 9-#7 10-#7 11-#7 9-#8 12-#7	20-#5 13-#7 12-#8 14-#8 15-#8 16-#8 16-#8	10-#5 10-#5 11-#5 9-#6 10-#6 10-#6 11-#6	10-#5 10-#5 10-#5 11-#5 12-#5 12-#5 9-#6	2.60 2.92 3.26 3.69 4.04 4.24 4.47	2.62 2.93 3.28 3.74 4.10 4.31 4.52	2.61 2.91 3.29 3.93 4.26 4.55 4.72	27 27 27 27 27 27 27 27 27 27	50 100 150 200 250 300 350	16 21 33 42 52 63	14-#6 13-#7 19-#6 13-#8 14-#8 14-#8 15-#8	10-#5 10-#5 12-#5 9-#6 10-#6 11-#6 11-#6	10-#5 10-#5 10-#5 11-#5 11-#5 12-#5	10-#5 10-#5 10-#5 10-#5 10-#5 10-#5	2.66 2.93 3.18 3.58 3.87 4.03 4.26	2,66 2,93 3,22 3,62 3,91 4,10 4,30	2.6 2.9 3.2 3.6 3.9 4.1 4.3
28 28 28 28 28 28 28 28	50 100 150 200 250 300 350	24 29 34 41 48 56 64	0.743 0.698 0.686 0.611 0.609 0.608 0.607	126 151 175 195 209 220 229	252 303 350 390 418 440 457	339 407 472 525 563 592 616	13-#5 4 13-#5 5 15-#5 6 17-#5 4 13-#6 1 19-#5 3 20-#5 1	13-#5 16-#5 10-#7 11-#7 12-#7 10-#8 10-#8	16#6 15#7 13#8 15#8 16#8 16#8 18#8	10-#5 11-#5 12-#5 10-#6 11-#6 11-#6 16-#5	10-#5 10-#5 12-#5 12-#5 13-#5 10-#6	2.64 3.01 3.42 3.88 4.19 4.40 4.67	2.65 3.03 3.44 3.90 4.24 4.47 4.75	2.63 3.07 3.54 4.03 4.46 4.68 4.93	28 28 28 28 28 28 28 28 28	50 100 150 200 250 300 350	17 24 30 37 49 60 70	15-#6 14-#7 13-#8 14-#8 15-#8 15-#8 16-#8	10#5 11#5 13#5 10#6 11#6 11#6 16#5	10-#5 10-#5 11-#5 12-#5 12-#5 12-#5	10-#5 10-#5 10-#5 10-#5 10-#5 10-#5 11-#5	2.63 3.00 3.43 3.70 4.02 4.08 4.33	2.65 3.02 3.43 3.74 4.06 4.15 4.42	2.6 3.0 3.4 3.7 4.0 4.2 4.5
29 29 29 29 29 29 29 29	50 100 150 200 250 300 350	26 32 37 45 54 63 71	0.711 0.674 0.638 0.610 0.608 0.607 0.607	139 167 192 212 226 236 245	277 333 385 423 451 472 490	373 448 518 570 607 635 659	13-#5 4 15-#5 5 17-#5 4 19-#5 3 14-#6 3 15-#6 0 16-#6 0	11-#6 10-#7 20-#5 12-#7 10-#8 11-#8 11-#8	13#7 13#8 15#8 16#8 17#8 18#8 19#8	11.#5 12.#5 10.#6 11.#6 16.#5 12.#6 17.#5	11-#5 11-#5 13-#5 13-#5 10-#6 11-#6	2.85 3.29 3.71 4.07 4.34 4.72 4.90	2.86 3.32 3.74 4.12 4.39 4.77 4.97	2.85 3.38 4.31 4.55 4.94 5.18	สสสสสสส	50 100 150 200 250 300 350	19 26 33 43 55 67 78	13-#7 15-#7 14-#8 15-#8 16-#8 17-#8 17-#8	11.#5 12.#5 10.#6 11.#6 16.#5 12.#6 12.#6	11-#5 11-#5 12-#5 12-#5 13-#5 13-#5	11.#5 11.#5 11.#5 11.#5 11.#5 11.#5 11.#5	2.90 3.15 3.62 3.92 4.10 4.40 4.46	2.89 3.65 3.96 4.14 4.45 4.55	2.8 3.2 3.6 4.0 4.1 4.4 4.6
30	50	28	0.724	152	305	410	14-#5 6	16-#5	15#7	11-#5	11-#5	2.92	2.94	2.90	30	50	21	14-#7	11-#5	11-#5	11-#5	2.89	2.91	2.9
30	150	41	0.663	210	420	565	19-#5 6	12-#7	16#8	11-#6	13-#5	3.96	3.97	4.00	30	150	36	15-#8	11-#6	12-#5	11-#5	3.76	3.79	3.8
30 30 30 30	200 250 300 350	50 60 69 78	0.609 0.608 0.607 0.606	228 242 254 262	457 484 507 523	615 652 683 704	20-#5 5 15-#6 3 16-#6 2 23-#5 1	10-#8 11-#8 11-#8 10-#9	18#8 19#8 20#8 20#8	16-#5 12-#6 10-#7 10-#7	10-#6 10-#6 11-#6 11-#6	4.19 4.57 4.93 5.16	4.26 4.64 4.99 5.23	4.44 4.81 5.25 5.60	30 30 30 30	200 250 300 350	49 62 74 86	16-#8 17-#8 18-#8 18-#8	16-#5 12-#6 10-#7 10-#7	13-#5 13-#5 10-#6 10-#6	11-#5 11-#5 12-#5 12-#5	3.96 4.22 4.64 4.70	4.03 4.29 4.72 4.78	4.1 4.3 4.7 4.8

Two-Way Slab System (Cont.)

- Initial sizing from CRSI
- Use DDM
- 10" thick slab
- 24" max depth
- 41" Columns!
- 4 hour fire rating

SPAN: 30' × 30' SUPERIMPOSED LOAD: 150 psf

4000 psi NW concrete 60,000 psi steel

One Way Slab System -with Intermediate Beams

- Span only 15'
- 7.5" thick slab

JLAB: 7.5" JLAB #4 bars @ G" O.C. Thermal/Cracking #4 bars @ 12" d.C.

> 4000 psi NW concrete 60 ksi steel

One Way Slab System -without Intermediate Beams

- 13" slab
- 24" max depth
- 50" wide beams

B,: 50" x 24"

(12) # 10 bottom roinforcement, no T action assumes

SLAB: 13" ONE way flat slab

#9 bars @ 12" O.C. Thermall Acadesian

4,000 psi NW concrete 60 ksi steel

System Comparison

	Composite Steel	Non-Composite	2 Way Flat Plate	1 Way Slab with	
Criteria	Framing	Steel Framing	Slab	Intermediate	1 Way Slab
Weight (psf)	53.5	49.5	124.4	127.4	165.3
Depth	24"	24"	10"	24"	24"
Cost	\$14.25 / SF	\$13.43 / SF	\$11.25 / SF	\$13.67 / SF	\$11.72 / SF
Fire Protection	None	None	None	None	None
Fire Rating	2 Hr	2 Hr	4 Hr	4 Hr	4 Hr
Environmental Impact (IbCO2/Ib)	9107.6	8744.7	6209.7	6349.6	8239.7

• References

- RS Means 2002
- "Fire and Concrete Structures" (2008 ASCE). D. Bilow.
- "Embodied Carbon of Steel Versus Concrete Buildings" (2013 Cundall). D. Clark and D. Bradley
- Vulcraft Steel Deck Catalogue (2008)

Decision Matrix

	Importance	Composite Steel	Non-Composite	2 Way Flat Plate	1 Way Slab with	
Criteria	Factor	Framing	Steel Framing	Slab	Intermediate	1 Way Slab
Cost	1.50	-1	0	1	0	1
Environmental Impact	1.50	-1	-1	1	1	1
Constructibility	1.00	2	2	2	0	0
Durability	1.00	1	1	1	1	1
Fire Resistivity	1.00	1	1	2	2	2
Weight	0.75	2	2	1	1	0
Vibration Susceptibility	0.75	-1	0	1	1	1
Detailing Intensity (Seismic)	0.50	1	1	-2	-2	-2
		2.25	4.5	8.5	5	5.75

Thank you.

• Questions?